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Abstract .

In this paper, we define an index of the convexity measure  by  

means of the logarithmic operator . As an  application , we study the  

influence of the convexity on Newton method  for solving nonlinear  

equations. Then we define a family of Newton type iterative   processes t o

solve a complex or scalar nonlinear equation, we can always apply an

iterative process of this family faster than   Newton method  .
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1. Introduction .

We begin this paper defining an index of the convexity measure for a

function  h  at each point . We prove that it is a good measure of the

convexity and we make a comparative study of this one and the curvature

of h.
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To continue we do an application of this concept. So we are going t o

prove that when we apply Newton method to solve a nonlinear equation

          (1)                               h(x) = 0                                         

the convexity of the function h decides the speed of convergence of this

iterative process . From this result we obtain the family of Newton type

iterative processes given by the expression  

(2 ) x n
α = Hα(x

n−1
α ) = x

n−1
α −

h(x
n−1
α )

h (́ x
n−1
α )

(1 + αh(x
n−1
α ) ) with α ≥ 0.

Notice that  all these iterative processes have the same order o f

convergence and efficiency index  [7]  than Newton method but they have

more speed of convergence than this one .  You can see that  for  α = 0

we obtain Newton  method .

It is interesting to note that in the  practice  given  (1)  we compute

the convexity of h , which allows us to know the appropriate value of α t o

obtain the fastest iterative process of the family (2) for solving  this

equation . The above optimization results assures us that this method

converges to the root of (1) faster than Newton one .

To continue , we consider the parameter  α  as a function , α(x), and

we study when we obtain  iterative processes with cubical convergence .

Then , we define a family  of iterative processes. From the result o f

optimization obtained for this family , we do a comparative study of the

known Halley and  Chebyshev methods  [1] .

To finish , we study the convergence of this family  (2) on the

complex plane by means of majorizing sequences  [8] .

2.- An index of convexity measure .
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Let  h[ C(2)(V)  be a convex function and  V   a neighbourhood  of  a

suitable   x0 [ [a,b]  . The curvature  K ,  [6] ,  is a measure of the

convexity of a function at each point .

  

Notice that if  √  is a concave function in  C(2)(U)  ,  h(xo) [ U ,  with

√'(h(x0)) = 1 , it is clear that   √ o h  has smaller curvature than  

h, f ig .1., sin ce tha t K(ϕh)(xo) = K(h)(xo) +
ϕ´́ (h(x o))h(́ xo)

2

[1 + h (́xo)
2
]
3/ 2 . Hence,
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by applying a concave operator to a convex function we obtain a function

with smaller curvature than the original one . For this , if we consider the

logarithmic function and  the convex function  T[h] , with  T[h](x) = h(x)-

h(x0)+1 , we are in the previous conditions . Now , if we apply successively

the logarithmic operator to  T[h]  until we obtain a concave function, we

can  define an index of the convexity measure of a function at each point ,

called log-degree of convexity of  h , considering the number  of t imes

that we need to apply the logarithmic operator to get a concave function .

So , if we define  Hn(x) = log Gn-1(x)     with    G0(x) = T[h](x)    and   Gn(x)

= T[Hn](x)   for n≥1  ,  the sequence  {Hn(x)}   will  characterize  the log-

degree of convexity of  h ,  since  K(h)(x0) > K(H1)(x0) > ... > K(Hn)(x0) ≥

0 > K(Hn+1)(x0) > ... . ( fig.2.  with  x0 = 0) .

      

On the other hand , it is easy to prove , by induction , that   H n´´(x0)

= h´´(x0 ) - n h´(x0)2    for all   n , and  therefore it follows that  Hn  is

convex at  x0  if and only if   h´´ (x0 ) [ h´(x0) ] - 2   ≥  n  .  When   x0  is a

minimum of  f, it follows  that  Hn   is convex at  x0 for all  n ,  and
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conversely . Then , the log-degree of convexity of  h  at  x0  is defined t o

be the positive real number given by   U[h](x0) = h´ ´ (x0 )[ h ´ (x0 )]-2 . If  xo

is a minimum of  h  we set   U[h](x0) = + ∞ .

Notice that the curvature and the log-degree of convexity of a

function have a similar behaviour , except in a neighbourhood of the cr i t ic

points . This situation does not exist in our conditions .

On the other hand ,  Roberts  [9] points out some of the "good

properties" that a measure of the convexity have to have . It is easy t o

prove that  U[h](x) satisfies some of these ones :

(i)  U[h](x0) ≥ 0    and      U[h](x) = 0   in   V    if and only if    h  is

affine  .

(ii)  In our conditions , i.e. ,  h1  and  h2  increasing functions , it is

verified that   U[h1+h2](x0)  ≤ U[h1](x0) + U[h2](x0)  .

3.- Newton method and the convexity .

As the functions  h  and  h = h/h(x0)  have the same convexity

respect to the logarithmic operator in the point  x0   and    h(x0) = 1 ,   i f

we apply the last study to the function   h   we obtain another convexity  

measure ,  the  degree  of logarithmic  convexity  [2] , which  

denote by L
h
(x

0
) = U[h ] =

h(x
0

)h ´ (́ x
0

)

h́ ( x
0

)
2

.

It is known [7] , that   if h ∈ C(p)([a, b]),  p ≥ 2 , verifies Fourier´s

conditions , i.e.  h(a)h(b) < 0 , h´≠0  , the sign of  h´´ not changing  in

[a,b] , and   besides  we  take  x0∈ [a,b]   such   that  h( x0 ) h´´( x0 ) > 0 ,

then  the sequence   {xn}  given by
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(3) x n = H( x
n−1)= x

n−1
−

h(x
n−1

)

h (́ x
n−1

)

converges to the only root s of (1) in  [a,b] . Besides this procedure has

at least quadratic convergence .  

From  now on , we consider   h ∈ C(p)([a, b]),  p ≥ 2 ,  h(a)h(b) < 0 ,

h´ > 0  and    h´´ ≥ 0   in   [a,b] .

By the geometric construction of Newton method it is clear that the

convexity of h influences in the convergence of the sequence {xn} , as we

can see in the following result .  For this , we consider a  function  g  in

the same conditions as the function  h  and such that  g(x) = 0  is an

equivalent equation to  (1)  in [a,b]  , i.e. , it has only the

  
roo t s in [a,b ] . We denote y n = G(y

n−1
) = y

n−1
−

g(y
n−1

)

g (́y
n−1

)

with  y0 = x0 .

On these hypothesis the Newton method converges to the only root s

of (1)  in  [a,b] for each  x0 ∈ [a,b]   if  h(x0) > 0   or  if h(x0) < 0  when  

b - x0 ≥ - h(x0) / h´(x0) . From now , we assume this condition.

Theorem 1.

If  | Lh(x)| > | Lg(x) |  in  [a,b] - {s}, then the sequence  {yn} converges

to s faster than  {xn} .

Proof:
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In our conditions, if  h(x0) > 0 it is known [7]  that {xn}  and  {yn}  

are decreasing sequences .Then , it is enough  to  prove that  yn < xn  f o r

all n ∈ N .

Applying   the   Mean  Value  Theorem ,  as  H  and  G  are increasing

functions ,  we obtain    xk - yk  ≥  (H-G) (xk-1)  =  (Lh(θk-1) - Lg(θk-1) )

(xk -1  - s) > 0  , for   θk-1∈ (s,xk-1)  , and by an induction procedure i t

follows the thesis .  

If h(x0) < 0 ,  as   s = H(s) ≤ x1 = H(x0) ≤ b  it follows that  xn ≥ s

for all n ≥ 1 , then  the sequence {xn}  decreases to s for n ≥ 1 . On the

other hand , as   y1 - x1 = G(x0) - H(x0) = (Lg - Lh)( θ0)(x0 - s) < 0 f o r  

θ0∈(x0 , s) . So , it is easy to prove thet  {yn} decreases to s for n ≥ 1 .

Therefore , as in the above case , it follows that {yn} converges to s

faster than  {xn} .        #

Notice that it is enough that g  verify the last conditions  in  (s,x0]   

if    x0 > s   or   in     [ x0 , x1]    if    x0 < s .

From  the  last  theorem ,  given  the  equation  (1)  we  take  the

 f unc ti on  g(x ) = 
1 + αh(x)

h(x)    w i t h  α ≥ 0    and  1  + αh(x ) > 0  . I t i s c le

     that    xn
α = xn-1

α
 -   

g (́xn-1
α

)

g(xn-1α )
  =  Hα(xn-1

α
)   by  (2) . So ,  g(x) = 0  i s  an

equation  equivalent to (1) . Then applying the above theorem we obtain

conditions  for  each  α  such that the iterative process of the family  (2) ,

converges to  s .

From now we denote by :
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〈 p , q 〉 = [ min.{p,q} , max. {p,q} ]

 〈a,b,x o 〉 =

[ a,x
o

] if x
o

> s

[ x
o

,b] if x
o

< s  
 i

 i





 m 〈 a , b , x0 〉 = mi n.
 



  

2 -  Lh(x)
U[h ](x)

  |  x ∈ 〈 a , b , x0 〉  




 M 〈 a , b , x0 〉 = max.
 



  

2 -  Lh(x)
U[h ](x)

  |  x ∈ 〈 a , b , x0 〉  




and for any interval  [ p , q ]

 m [ p , q ] = mi n.  



 
2 -  Lh(x)
U[h ](x)

  |  x ∈ [ p , q ]  




 M [ p , q ] = max .  



 
2 -  Lh(x)
U[h ](x)

  |  x ∈ [ p , q ]  




Besides we  assume   |Lh(x)| < 2  in  [a,b] .  Notice that this condition

is not restrictive because  Lh(s) = 0 .

Theorem 2.

         I f  0 ≤ α ≤ m 〈 a , b, x0 〉 ,  then  the sequence  {xn

 }  gi

ven by  (2) i s

decreasing and converges to s .

Moreover ,  if   0 ≤  α i  ≤  m 〈 a , b, x0 〉   for  i = 1,2   and  α1 ≤  α2  ,

then the iterative process corresponding  to  α2  converges to s  fas te r

than the corresponding to  α1 .

Proof :  

Notice that if  α ≤ m 〈 a , b, x0 〉  then  1 + αh(x) > 0  in  [a,b] . On the

 other hand , as  g (́x) = 

[1 + αh(x)]
2

h (́x)   ,   g´́(x) = 

[1 + αh(x)]
3

h ´́(x) -  αh (́x)2[2 - Lh(x)]

it is clear that  g´(x) > 0  and  g´´(x) > 0  in  [a,b] , so the function  g

verifies the same conditions as the function h and thus  g(x) = 0 is an

equation equivalent to (1) .Besides , when  h(x0) < 0  we have that
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 x
1
α = x

0
α -   

g´( x
0
α)

g(x
0
α)
   =  x

0
α  -  

h (́x
0
α)

h(x
0
α)

  -   α 
h (́x

0
α)

h(x
0
α)

2

   ≤  b    by  the el ec ti on of

 x0 ,  then  {xn

}

1  [a , b] .

In these conditions the Newton method converges and so the

sequence given by (2) is decreasing to s .

To prove the second statement , given  0 ≤  α i  ≤  m 〈 a , b, xo 〉   for  

 i  = 1,2   w i th    α1 <  α2  ,  w e  denote   gi(x) = 
1 + α ih(x)

h(x)
  , then i t i s

  
 easy  to  prove  that   | Lg2

(x) | <  | Lg1
(x) |  i n  [a , b]\ {s} ,  si nce that

Lg(x) = Lh(x) - α h(x)[2- Lh(x)] . Therefore , applying the Theorem 1 we

obtain the optimization result of the thesis .    #

To continue , we are going to study the convergence of the iterative

processes  (2)  in other way , i.e., without consider its relation  with

Newton  method , thus we can get , for this family , some  results  o f

global  convergence  that complete the ones of the Theorem 2 .

Theorem 3.

   
 I f x

0
 ∈  [a , b] , | L

h
(x ) | < 1 i n [a , b]  and  0  ≤ α ≤ mi n.

 


 
2h(b)

1  , -
3h(a)

1  



then the sequence given by (2) converges to s .

Proof:
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As   H´α(x) = Lh(x) - α h(x)[2- Lh(x)]  and  taking into account the

cases  x < s  and  x > s  we can prove  that    -1 <  H´α(x) < 1 in  [a,b] .

Therefore , there is  N ∈ R , 0 < N < 1  such that  | H´α(x) | < N .

     Then w e have that  |x1

 

 s| = |Hα (x0

) 

 H(s)| = | Hα(θ0)| |x0

 

 s|  w here

   θ0∈ 〈x0

 , s 〉  ,  so  w

e  have  |x1

 

 s | < N |x0

 

 s | ,  and  by  means  an

 i nduc ti ve  pr ocedur e  i t f ol l ows   that   |xn
α -  s| < N

n
 |x

0
α -  s|   f o r   al

n ≥ 1 . Therefore the sequence converges to s .     #

For the next result we choose  x0 ∈ [a , b]  with  h(x0) < 0 and such

 that  M[x0 , b] < -   h(x0)   .

Theorem 4.

Let  x0 ∈  [a , b]  be with  h(x0) < 0 and  α ∈  [ M[x0 , b] , -1/h( x0) ] ,

then the sequence given by (2) is increasing to s .

Moreover , if   α1 <  α2   with   α i ∈  [ M[x0 , b] , -1/h( x0) ] , then

 {xnα2 }  converges to s  faster than  {xnα1 } .

Proof:

As  α  ≥  M[x0 , b]   it  follows  that   H´α(x) ≥ 0  in  [x0 ,s ]  ,  then

 x1

 

 s = H ά(θ0)(x0

 

 s ) < 0  for  θ 0 ∈ (x0 , s) . Thus , by i nducti on w e

can prove that the sequence is bounded by s .

On the other hand  and inductive procedure allow us to obtain that
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and  1 + αh(x) > 0  in  [xo ,s ] . So this sequence converges and taking

limits in (2)  we obtain that the limit is the root  s of (1) .

As  the  asymptotic  error  constant  [4] , Cα i ,  for   the   iterative

processes (2) are C
α i

=
f ´́ (s)
2f (́s) − α

i
f (́s) and αi ≥ M[ xo, b] i t is

clear that    Cα1  <   Cα2 .  So    the  thesis is proved.      #

Now we are going to realize a practical study of these results. For

this , we  consider   the  nonlinear  equation   xm - r = 0  ,  for    m > 1 , r ,

x ∈ R  with    r > 0 , x ≥ 0 .  Then ,  for    h(x) = xm - r    , we  obtain

 
2 -  Lh(x)
U[h ](x)

  = 
(m+1)xm + (m- 1) r

m- 1
  ,  that  i s  a  decreasi ng  functi on .

Therefore , if we  consider , for example ,  m = 15 , and  r = 1993 ,

and  applying  the   Theorem 2    for    [a , b] = [1,1993]   ,   x0 = 5    and

α = m( 〈1,10,1993 〉 ) , we  get the results of the Table 1 . Notice that the

Table 1 and 2 show the error between the exact value and xn in the

respective sequences. Moreover all the calculations were made with  9  
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On the other hand , if we consider the Newton method  we get the

results of  Tab. 2 . Therefore   for   α = M(<1,1,1993>)    the iterative

process converges faster than  the correspondent  for  α = 0 .

Nevertheless, when we apply  the Theorem 4  is when  actually we

can see the difference between the speed of convergence of any process

of the family and  Newton method . So if we take  x0 =1  we get the

results given on the Table 2 .

This shows us  the big increment in the speed of convergence taking

into account the simplicity of the equation considered .
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In the practice , given the equation (1)  we compute  Lh and  U[h] and  

taking    α = m 〈 a , b , x0 〉   or    α  =  M [x0 , b ] ,  if x0 ∈ [a , s]  we obtain

the best iterative process of the family (2) to solve (1) .

To finish , notice that all the results obtained in this Section are t rue

with  slight changes if  h  is in the Fourier´s conditions , since that  , if  h

verifies Fourier´s conditions  and  we are not  in the above hypothesis , we

can  always  be  in this  situation  changing   h(x)   by   h(-x) , -h(x)  or  -

h(-x) .

Besides , if we consider  α ≤ 0  we can realize an analogous study o f

the iterative processes  given by (2) , but we are not interested in that a t

the moment .

To continue , we are going to study when we can  obtain iterative

processes with cubical convergence from this family .
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Now, if we consider  p ≥ 4 , we can note that  for  α = U[h](s)/2

Hα(s) = s   and    H´α(s) = H´´α(s) = 0 .  So , it is known [1] that for this

value of α  we obtain an iterative process of third order. But as  s  is

unknown we cannot take this value of α . Therefore if we consider  α

as a function , α( x) , veri f ying 0 ≤
U[h](x)

2
≤ α(x) ≤

U[h](x)
2 − L

f
(x)

, when

h(x) ≥ 0  ,  and  we  take   H(x) = x - h(x) [ 1+ α(x) h(x) ]/h´(x)  ,  we

obtain that  all  these  iterative processes have cubical convergence . 

Besides  it    is    easy   to   note   that   for     α = U[h](x)/2     and   

α = U[h](x)/(2-Lh(x))    we  obtain  the  Chebyshev  and   Halley  methods

respectively .  So ,  this  situation  allow  us  to  study  the optimization

for  these functions   α(x) , and so  to compare  these last  methods . For

the  optimization , when the iterative processes are decreasing ,   see  [ 3 ]

,  we   have   that   if   α1(x)  <   α2(x)  ,   and  

we denote xn

α
1

= Hα
1
( x

n−1

α
1 ) and x n

α2
= Hα2

(xn−1

α
2 ) with xo = xo

α
1

= xo

α2
in

[a,b] , then x
1

α
1− x

1

α
2 =

h(xo)
2

h´(xo)
[ α

2
(xo) − α

1
(xo) ] > 0 , and an inductive

procedure assures us tha t x n

α
1 > x n

α
2 f o r each n ∈N .

Therefore we can say that, in the decreasing case ,  the Halley

method is better than  the Chebyshev  one .

4. The family of Newton type iterative processes  in t h e

complex plane .

In this Section we study the convergence of the family  (2) to solve a

nonlinear complex equation through the results obtained before .  We
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assume that  D is an open and convex subset of   C   and   f: D ___>  C  an

holomorphic function in  D . Given the nonlinear equation

   (4)                       f(z) = 0

and the family of iterative processes

(5) z n
α = Fα(z

n−1
α ) = z

n−1
α −

f ( z
n−1
α )

f (́ z
n−1
α )

(1 + α f ( z
n−1
α ) )

we consider z o∈D , denote η=
f ( z

o
)

f ´ ( z
o

)
and we make the real

polinomial p(x) =
1

4η
x2

− 2 x + 2η .

To continue we will obtain some results of convergence and

uniqueness for the family  (5)  by means of the Kantorovich type

conditions  [5]   from the real nonlinear equation

(6)              p(x) = 0

using mayorizing sequences [8] . We will denote   x
*  =  2η ( 2 -  2 ) the

smallest root of  (6)  .

Theorem 5 .
On the last conditions , le t α ∈ [ 0 , m

1 6η( m + 1)
] and m ≥ 1

with  m[R    , verifying
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(i ) f (z ) <
p(x)
m when z − z

o
≤ x − x o

(ii ) U
f
(z) ≤ m

m +2 α η
( m

8 η
− 2 α (m +1) ) f o r z ∈B(zo ,x* )

Then  ,  for   each   α   fixed , the  iterative  process  given  by (5)

converges t o the only roo t z * o f ( 4) in B(zo,x * ) . Besides

z − zo ≤ x * − x n
α .

Proof :

Let { x n
α } be the real sequence obtained aplying the

   
family o f iterative processes (2) f o r α ∈ 0 , m

1 6η (m + 1 )



,

Hα = Pα  ,   h =  p     and   xo = 0  , notice that  p verifies the Fourier´s

conditions  in  [0, x*]  .

In  view  of  the  comments  following  the   Theorem 1   and  as

U[ p] (x) =
2η

( x − 4 η)
2

is an increa sin g function and α < 1
1 6η

=

min .{
U p[ ] (x)

2
| x∈ [0 , x * ] } < min .{

U p[ ] ( x)
2 − Lp(x)

| x ∈ [0 , x* ] } , i t follows

[0,x*] , being this sequence increasing to  x* .

Now we are going to prove that in ours hypotesis the sequence

{ x n
α} mayorizes { z n

α } and the results o f the Theorem are

   obtained [5] . I t is known [ 5] t ha t the sequence { x n
α }

 mayorizes { z n
α } i f the following conditions are veri f ied

(a)    |Fα(zo) - zo | ≤  Pα(xo) - xo  .

(b)    | F'α(z) | ≤ P'α(x)    when   | z - zo | ≤ x - xo  .

The condition (a)  is clear because |Fα(zo)-zo|≤ η(1+ αp(0)/m) .

Taking into account that  p(x)  is a decreasing function  in  [0,x*] and
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( i ) , we obtain t ha t |F' α (z)| = | Lf( z) + α f ( z) Lf( z) − 2 α f ( z) | =

|f ( z) | | U[ f ](z) + α Lf (z)− 2 α | ≤
(* )

p(x)
m | U[ f ] (z) | (1 +

2α η
m ) + 2 α


 . On

the other hand as U[p ](x) (1 + αp(x) ) −2 α ≥ U[p ](0) − 2 α = 1
8 η

−2 α

we have P' α ( x) ≥
(* * )

p(x) [ 1
8 η

− 2 α ] . Then f rom (* ), (* * ) and

(ii)   it follows the condition  (b) .  This completes the proof .      #

Note : As 1
2

≤ m
m +1

≤ 1 f o r m ≥ 1 , we can extend the

values of  α  on  R+  if we do a good election of the initial point  zo .

Now , we are going to do a study of the situations that  can appear in

the practice . On the first place , given  f(z) = 0 and  m≥1 verifying the

condition  (i) from the Theorem 5  , we wonder if  it always  exist an

iterative  process of the family  (5)  to solve this equation .  For that  we

take   zo [ D  such  that     M(U[f])  ≤  1/8η ,  where  we  denote

M(U[f ]) = max.{ |U [ f](z)| | z ∈ B(zo,x* )} .

Corollary 6.

On the above conditions , given  m ≥ 1 , such that  |f(z)| ≤ p(x) /m

when   |z-zo| ≤ x-xo  , then there is  α [ [ 0, m/16η(m+1) )  such that the

respective  iterative  processes  of the family   (5) converge to the only
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 root  z*  of  (4)  i n  B(z0 , x* ) .  Besi des  | z* -  znα |  ≤  x* -  xnα .

Proof :

We consider  S(m,-) : [0,+∞] -----.  R   with

(7) S(m ,α ) = m
m +2 αη

[ m
8 η

− 2 α ( m +1) ]

As   M(U[f])   ≤  m/8η   =   S(m,0)    and  taking into account that
S(m, m

1 6η( m +1)
) = 0 , i t exists α ∈ [0 , m

1 6η (m +1)
) such tha t

| U[f](z) | ≤ S(m,α)  .  See  ( fig. 3 ) .  Then , the Theorem 5.  proves the

result .      #

            

Notice  that ,  by   the   optimization  result   obtained   for   the

 sequences   {    }  , i n the practi ce w e w i l l  take   a   such that    S(m,a)  tn

 =  M(U[f])  .

To finish , we want to find convergence conditions for each iterative

process of the family   (5) ,  i.e.  for each value of  α  given in  [0,+∞)  .

 Theorem 7.
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Given   α[[0,+∞)  ,  there exist  zo[D    and   m ≥ 1  such that

α < m
1 6 η( m +1)

and |U[f ](z)| ≤ m
m + 2α η

[ m
8 η

−2 α (m +1) ] f o r z ∈ B(z o,x* ) .

Proof :

Given    α[[0,+∞)   ,  as  1/2  ≤  m/(m+1)  ≤ 1  , it is enough to take  

zo[D   such that    α  <  1/32η   , being   η = | f(zo)/f´(zo) |  . Moreover  

x* = 2 η (2 -  2 ) .

On the other hand , we consider    S(-,α) : [1,+∞) --->  R   , with

S(m,α)  given by  (7) .

I t is clear t ha t S(1,α ) =
1− 3 2ηα

8 η(1+2η α)
. Then i t follows

that  if   M(U[f]) ≤ S(1,α)  , we can take   m=1  .  If  M(U[f]) > S(1,α)  , i t

exits m0[R+ such that M(U[f]) = S(m0,α). This proves the Theorem.           

#
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From this result  we can deduce that for each   α[[0,+∞) the

respective iterative process of  (5)  always converges if the condition   (i)

of the Theorem 5.  is verified .   
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