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Abstract .

In this paper, we define an index of the convexity measure by
means of the logarithmic operator . As an application , we study the
influence of the convexity on Newton method for solving nonlinear
equations. Then we define a family of Newton type iterative processes to
solve a complex or scalar nonlinear equation, we can always apply an

iterative process of this family faster than = Newton method

Classification A.M.S. 1985 . : 65 H 05, 26 A 51
C.R. CATEGORIES : 5.1, 5.15
Keywords : Nonlinear equations . Iterative processes . Optimization .

Convexity .

1. Introduction .

We begin this paper defining an index of the convexity measure for a
function h at each point . We prove that it is a good measure of the
convexity and we make a comparative study of this one and the curvature

of h.



To continue we do an application of this concept. So we are going to
prove that when we apply Newton method to solve a nonlinear equation
(2) h(x) =0
the convexity of the function h decides the speed of convergence of this
iterative process . From this result we obtain the family of Newton type

iterative processes given by the expression

h(x* )

o n-1

(2) Xa=Ha(xa )=Xn_l—m
n-1

o .
n .y (l+ah(xn_l)) with  a=0.

Notice that all these iterative processes have the same order of
convergence and efficiency index [7] than Newton method but they have
more speed of convergence than this one . You can see that for o =0
we obtain Newton method .

It is interesting to note that in the practice given (1) we compute
the convexity of h , which allows us to know the appropriate value of a to
obtain the fastest iterative process of the family (2) for solving this
equation . The above optimization results assures us that this method
converges to the root of (1) faster than Newton one .

To continue , we consider the parameter o as a function , a(x), and
we study when we obtain iterative processes with cubical convergence .
Then , we define a family of iterative processes. From the result of
optimization obtained for this family , we do a comparative study of the
known Halley and Chebyshev methods [1] .

To finish , we study the convergence of this family (2) on the

complex plane by means of majorizing sequences [8] .

) ind : :



Let h< C(2)(V) be a convex function and V a neighbourhood of a

suitable  Xg < [a,b] . The curvature K , [6] , is a measure of the

convexity of a function at each point .
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by applying a concave operator to a convex function we obtain a function
with smaller curvature than the original one . For this , if we consider the
logarithmic function and the convex function T[h] , with T[h](x) = h(x)-
h(xp)+1 , we are in the previous conditions . Now , if we apply successively
the logarithmic operator to T[h] until we obtain a concave function, we
can define an index of the convexity measure of a function at each point ,
called log-degree of convexity of h , considering the number of times
that we need to apply the logarithmic operator to get a concave function .
So , if we define Hp(x) = log G.1(X)  with  Gg(x) = T[h](x) and Gp(X)
= T[Hy](X) for n=1 , the sequence {H,(x)} will characterize the log-
degree of convexity of h, since K(h)(xg) > K(H1)(Xg) > ... > K(Hpy)(Xp) =
0 > K(Hp+1)(Xg) > ... . (fig.2. with xg = 0) .
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On the other hand , it is easy to prove , by induction , that H " "(Xg)
= h""(xg) - nh'(xg)2 for all n,and therefore it follows that H, is
convex at xqg ifand only if h""(xg) [h"(Xg) 1’2 = n . When xg is a

minimum of f, it follows that H, is convex at xg for all n, and



conversely . Then , the log-degree of convexity of h at xg is defined to
be the positive real number given by  U[h](xg) = h""(Xg)[ h"(Xxg)]?2 . If Xgo
is @ minimum of h we set Ufh](Xxg) = + « .

Notice that the curvature and the log-degree of convexity of a
function have a similar behaviour , except in a neighbourhood of the critic
points . This situation does not exist in our conditions .

On the other hand , Roberts [9] points out some of the "good
properties" that a measure of the convexity have to have . It is easy to
prove that U[h](x) satisfies some of these ones :

(i) Ulh](xg) =0 and Uhljx) =0 in V ifandonlyif h is
affine

(i) In our conditions , i.e., h1 and ho increasing functions , it is

verified that  U[hy+h](Xg) = U[h1](Xo) + U[h,](Xo) -

3.- Newton method and the convexity .

As the functions h and h = h/h(xg) have the same convexity
respect to the logarithmic operator in the point xo and h(xg) =1, if
we apply the last study to the function h we obtain another convexity
measure , the degree of logarithmic convexity [2] , which
h(x,)h " (x,)

M(x)°

denote by L, (X)) = Uh]=

It is known [7] , that if h € C(P)([a, b]), p = 2, verifies Fourier’s

conditions , i.e. h(a)h(b) <0, h'=0 , the sign of h"" not changing in
[a,b] , and besides we take xp€ [a,b] such that h(xg) h"( xg) >0,

then the sequence {x,} given by



h(x ;)

(3) Xn=H(Xn—1)=Xn—l_—h(xn_l)

converges to the only root s of (1) in [a,b] . Besides this procedure has
at least quadratic convergence .

From now on , we consider h € C(P)([a, b]), p= 2, h(@h(b) <0,
h">0 and h”" =0 in [ab].

By the geometric construction of Newton method it is clear that the
convexity of h influences in the convergence of the sequence {x,} , as we
can see in the following result . For this , we consider a function g in
the same conditions as the function h and such that g(x) = 0 is an

equivalent equation to (1) in [a,b] , i.e., it has only the
90/,

gy, )

root s in [ab]. We denote yn=G(yn_1)=yn_l—

with  yg = Xg -
On these hypothesis the Newton method converges to the only root s
of (1) in [a,b] for each xg €[a,b] if h(xg) >0 or if h(xg) <0 when

b - Xg = - h(xg) / h"(Xg) . From now , we assume this condition.

Theorem 1.
If [La()] > | Lg(x) | in [ab] - {s}, then the sequence {y,} converges

to s faster than {x,} .

Proof:



In our conditions, if h(xg) > 0 it is known [7] that {x,} and {yn}

are decreasing sequences .Then , it is enough to prove that y, < x, for

allne).

Applying the Mean Value Theorem, as H and G are increasing
functions , we obtain  xg - yx = (H-G) (xk.1) = (Lh(6k-1) - Lg(Bk-1))
(Xk-1 -s) >0 , for 6y.1€(s,Xk-1) , and by an induction procedure it
follows the thesis .

If h(xg) <0, as s = H(s) = x; = H(xg) = b it follows that x, = s
for all n = 1, then the sequence {x,} decreases to s for n= 1 . Onthe
other hand , as y; - X3 = G(Xg) - H(Xg) = (Lg - Lh)( 80)(Xg - s) < O for
00€E(Xp , S) . So , it is easy to prove thet {y,} decreases to s forn =1 .

Therefore , as in the above case , it follows that {yp} converges to s

faster than {x,}. #

Notice that it is enough that g verify the last conditions in (s,Xg]

if Xp>s or in [Xy,X1] if Xy<s.

From the last theorem , given the equation (1) we take the
h(x)

function g(x) = m

with =0 and 1 +ah(x)>0 .1t iscle

equation equivalent to (1) . Then applying the above theorem we obtain
conditions for each o such that the iterative process of the family (2) ,
converges to s .

From now we denote by :



(p,q)=[min{p,q}, max. {p,q} ]

and for any interval [p, q]

_ e aeae o a
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Besides we assume [Lh(X)| <2 in [a,b] . Notice that this condition

IS not restrictive because Lu(s) =0 .

[heorem 2.

decreasing and converges to s .
Moreover , if O=< aj = m(a,b,xg) for i=12 and a;=< ap ,

then the iterative process corresponding to o, converges to s faster

than the corresponding to o .

Proof :
Notice that if o <=m({a, b, Xg) then 1+ ah(x) >0 in [ab]. On the

B T U > — —— > < == R P <o — == c - >y = ..o

—

it is clear that g’(x) >0 and g~ (x) >0 in [a,b] , so the function ¢
verifies the same conditions as the function h and thus g(x) = 0 is an

equation equivalent to (1) .Besides , when h(xg) < 0 we have that



o) h(d) _drw(xg)2
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In these conditions the Newton method converges and so the

sequence given by (2) is decreasing to s .

To prove the second statement , given 0 < aj < m(a, b, xg) for

| ealc,; tc;‘ .[;r‘ove“ -thiat”p| Lg;(x) |. <|Lgl (>(<‘).(|K)in [a, b]\r{s} smce .taat
Lg(X) = Lh(X) - a h(x)[2- Lnh(x)] . Therefore , applying the Theorem 1 we

obtain the optimization result of the thesis . #

To continue , we are going to study the convergence of the iterative
processes (2) In other way , i.e., without consider its relation with
Newton method , thus we can get , for this family , some results of

global convergence that complete the ones of the Theorem 2 .

Theorem 3.

1 1
| f xoe[a,b] | Lh(x)|<1 infa,b] and O Sasmin'{Zh(b)’ _3h(a)‘

then the sequence given by (2) converges to s .

Proof:
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As H g(X) = Lh(X) - a h(X)[2- Lh(x)] and taking into account the

cases x<s and x>s we can prove that -1 < Hg(X) <1in [a,b] .

Therefore , there is N € ﬂ ,0<N<1 suchthat | H o(X) | <N.

inductive procedure it follows that [x; - s|<Nn |xg- s| for al

n = 1 . Therefore the sequence converges to s . #

For the next result we choose xg &€ [a, b] with h(xg) < 0 and such

Let Xo € [a, b] be with h(xg) <0 and o € [ M[xq , b] , -1/h( Xo) ] ,

then the sequence given by (2) is increasing to s .
Moreover , if a1 < as with aj€ [ M[Xg , b], -1/h( Xg) ], then

Proof:
As o = M[xg,b] it follows that H;(x) =0 in [Xg,s] , then

can prove that the sequence is bounded by s .

On the other hand and inductive procedure allow us to obtain that
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and 1 + ah(x) >0 in [xg ,s ] . So this sequence converges and taking

limits in (2) we obtain that the limit is the root s of (1) .

As the asymptotic error constant [4] , Cyj, for the iterative

f7(s)
i~ |2f(s) ~

clear that Cgq1 < Cgy2. So the thesis is proved. #

processes (2) are Ca aif'(s)| and a, = M[xo,b] it is

Now we are going to realize a practical study of these results. For

this , we consider the nonlinear equation xM-r=0 , for m>1,r,

xe[[with r>0,x=0. Then, for h(x)=xM-r |, we obtain

Therefore , if we consider , for example , m =15 , and r = 1993 ,

and applying the Theorem 2 for [a,b]=1[1,1993] , Xxo =5 and
o = m((1,10,1993 )), we get the results of the Table 1 . Notice that the

Table 1 and 2 show the error between the exact value and X, in the

respective sequences. Moreover all the calculations were made with 9



.

" iteration Newton o = m(<1,10,1993>)

1 a,340538606 8,3405338606

2 7,673687194: 7 090538606

3 7,051649718 6,436332806

4 6,470908977 5,878537131

5 5,928884285 5,369665001

6 5,422994574 4,898984582

7 4950830843 4,461071583

g 4510144694: 4052809325

9 4,098837623 3671916783

10 3,714951025 3316466728

11 3,356656871 2,984729971

12 3022249008 2,675114542

13 2, 710135036 2,366142068

14 2,4186828751 2,116435293

15 2,146943118 1,6647093857

16 1,893133509 1,6297679389

17 1,6563434 1,410493677

18 1,435296589 1,205850119 |Tab- 1|
19: 1,226997364 1,014882196 =10
20 1,036450663 0,836731418; "0~

N

oy

12

On the other hand , if we consider the Newton method we get the

results of Tab. 2 . Therefore for o= M(<1,1,1993>) the iterative

process converges faster than the correspondent for o =0.

Nevertheless, when we apply the Theorem 4 is when actually we

can see the difference between the speed of convergence of any process

of the family and Newton method . So if we take xg =1 we get the
results given on the Table 2 .
This shows us the big increment in the speed of convergence taking

into account the simplicity of the equation considered .



N

(" iteration Newton o = M(<1,1,1993>)
1 -0,659461394: -0,659461394
2 132, 1405386: -0,516757762
3 123,2205386: -0,429182675
4 114,8952053: -0,343994892
5 107,1248942: -0,257446812
) 99 87260379: -0,170865328
7 93 10379945 -0,09088399
g 86,76624872: -0,031192672
9 80,88986805: -0,004298108
10 75,38657942: -3 78958E-05
11 70,2501767 -3 7195E-08
12 65,45620083: -6,66134E-15
13 60,96182334 0
14 o6,8057377 0
15 592,90805776 0
6 49 37075378 0 tab.2
17 4587491084 0
18 42 70595269 0 X,=1
19 39 74825842 0
\ 20 36,98774377 0 )

13

In the practice , given the equation (1) we compute Lp and U[h] and

taking a=m({a,b,Xg) or a = MI[xg,b], ifxg€[a, s] we obtain
the best iterative process of the family (2) to solve (1) .

To finish , notice that all the results obtained in this Section are true
with slight changes if h is in the Fourier’s conditions , since that , if h
verifies Fourier’s conditions and we are not in the above hypothesis , we
can always be in this situation changing h(x) by h(-x) , -h(x) or -
h(-x) .

Besides , if we consider o < 0 we can realize an analogous study of
the iterative processes given by (2) , but we are not interested in that at
the moment .

To continue , we are going to study when we can obtain iterative

processes with cubical convergence from this family .
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Now, if we consider p = 4 , we can note that for o= U[h](s)/2
Ho(s)=s and Hg(s) = H g(s) =0 . So, it is known [1] that for this
value of a we obtain an iterative process of third order. But as s is

unknown we cannot take this value of o . Therefore if we consider o

as afunction , a(X ,verifying 0= HLS]Q)S a(X) SZ_U[D]L% ,  when
Tt

h(x) =0 , and we take H(XX) =x - h(x) [ 1+ a(X) h(x) [/h"(x) , we
obtain that all these iterative processes have cubical convergence .

Besides it is easy to note that for o = U[h](x)/2 and
o = U[h](x)/(2-Lh(x)) we obtain the Chebyshev and Halley methods

respectively . So, this situation allow us to study the optimization

for these functions «o(x) , and so to compare these last methods . For

the optimization , when the iterative processes are decreasing , see [3]

, we have that if aq(X) < a2(x) , and

(0 (0] (0 (0.4 (0 (04

1 1 2 2 . 1 2.
we denote X =Ha1(xn_1) and X n =Ha2(xn_1) with Xg=Xg =Xg In

2

a a h(x,)
1 2 _

[a,b] ,then x1 —xl __h'(xo) [(12

(0

1 %2
n > Xnp for each neN .

(xo) - al(xo)] >0, and an inductive

procedure assures us that x

Therefore we can say that, in the decreasing case , the Halley

method is better than the Chebyshev one .

he famil : . . in tl
complex plane .

In this Section we study the convergence of the family (2) to solve a

nonlinear complex equation through the results obtained before . We
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assume that D is an open and convex subset of and f: D___> an

holomorphic function in D . Given the nonlinear equation
(4) f(z)=0

and the family of iterative processes

f(z(;: )
a (0] o — (04
(5) z, = Fa(zn_) =zn_1——f ° (1+ ocf(zn_l))
n-1
f(z)
we consider z, €D , denote n= f,(g) and we make the real
o]
polinomial p(x)= sz —-2X+2n .

4n
To continue we will obtain some results of convergence and
uniqueness for the family (5) by means of the Kantorovich type
conditions [5] from the real nonlinear equation
(6) p(x) =0
using mayorizing sequences [8] . We will denote X = 2n (2 - V’E) the

smallest root of (6)

Theorem 5 .

Onthelast conditions , let a€[0

m ] and m=1

"16m(m+ 1)

with m<ﬂ , verifying
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(i) lre)l <R

when |z—z |sx—x
fo) (0]
m *
(i ) |u (z)l m+20m(8 -2a(m+1) for zeB(z . x*)

Then , for each o fixed , the iterative process given by (5)

*

converges to the only root z of (4) in B(zo,x*) . Besides

|z - Zol = x* —x%.
Proof :
Let {xﬁ} be the real sequence obtained aplying the
. ) . m
famil of iterative rocesses (2) for el0, —| ,
y P (2) 0‘ [ 16n(m+1)]

Ho =Py , h=p and Xg = 0 , notice that p verifies the Fourier’s

conditions in [0, x”]

In view of the comments following the Theorem 1 and as

2n . . . . 1

Upl(X = ————— is an increasing function and o< =
(x -4m)” 16n
min . {M| XE[0,x* ]} < min {M|XE[O x*1},it follows

2-Lp(x)

[0,x"] , being this sequence increasing to x"
Now we are going to prove that in ours hypotesis the sequence

{x%} mayorizes {Z%} and the results of the Theorem are
obtained [5]. It is known [5] that the sequence {xj}
mayorizes {z%} if the following conditions are verified

(@) [Fa(zo) - Zo | = Pa(Xo) - Xo -

(b) |Fq@|=PgxX) when |z-2z5|=X-Xg -

The condition (a) is clear because |Fy(zg)-zgls n(1+ ap(0)/m) .

Taking into account that p(x) is a decreasing function in [0,x"] and
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(i) , we obtain that |F'a(z)|=|Lf(z)+ocf(z)Lf(z)—Z af(2] =

2
F(D1U[F)(2)+aLle(z)-2al 3 PO it yz) 2+ 220 20(] . On

the other hand as U[p](x) (l+(1p(x))—2(12U[p](0)—20c=ﬁ—2a

we have P'_(X) = p(x)[L—Zoc] . Then from (*),(** ) and
o (**) 81’]

(i) it follows the condition (b) . This completes the proof . #

=1 for m=1 , we can extend the

1
Note: As ==
2 m+1

values of o on [[+ if we do a good election of the initial point zj .

Now , we are going to do a study of the situations that can appear in
the practice . On the first place , given f(z) = 0 and m=1 verifying the
condition (i) from the Theorem 5 , we wonder if it always exist an

iterative process of the family (5) to solve this equation . For that we

take zg{( D such that M(U[f]) = 1/8n , where we denote

MUF]) = max{|U[fi(2)| |z €B(zy.x" )}

Corollary 6.

On the above conditions , given m = 1 , such that |[f(z)] = p(x)/m

when |z-zg| < X-Xg , then there is a([ 0, m/16n(m+1) ) such that the

respective iterative processes of the family (5) converge to the only
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Proof :

We consider S(m,-) : [0,+x] \/\/\/\/\/\/ [[ with

m m

(7)  S(m,a) = =— e [sn ~2 a(m+1)]
As M(U[) = m/8n = S(m,0) and taking into account that
m . . m
’1—6n(m+1)) = 0 ,it exists ae[O,m) such that

| Ufl(z) | = S(m,a) . See (fig. 3 ). Then, the Theorem 5. proves the

result . #
¢ ™
I
|
m
I A
. an m
mo | 160 {m+1)
2N N ) o
1 D ___'__————_
S o U
S om#d
| n
|
I
\ 7

Notice that, by the optimization result obtained for the

M(U[T)

To finish , we want to find convergence conditions for each iterative

process of the family (5) , i.e. for each value of o given in [0,+»)

Theorem 7.
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Given «o([0,+x) , there exist zg(D and m =1 such that

m m m EYEEEY
a<m and |U[f](Z)|sm+2an[8n—2a(m+1)]f0rZEBQO,X )

Proof :

Given oc<[0,+00) , as 1/2 < m/(m+1) =<1 it is enough to take

zO<D suchthat o < 1/32n , being n =|f(zg)/f'(zg) | . Moreover

On the other hand , we consider  S(-,a) : [1,+x) \/\/\/> ﬂ , with

S(m,a) given by (7).
1-32na
8n(l+2n a)

that if M(U[f]) = S(1,a) , we can take m=1 . If M(UI[f]) > S(1,a) , it

It is clear that S(1a) =

.Then it follows

exits m0<[[+ such that M(U[f]) = S(mg,a). This proves the Theorem.
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From this result we can deduce that for each a([0,+x) the

respective iterative process of (5) always converges if the condition (i)

of the Theorem 5. is verified .

REFERENCES
[1] GANDER , W.: On Halley’s iteration method .
Am. Math .Monthly . 92 , n°® 2, (1985) , 131-134 .

[2] HERNANDEZ , M.A. : A note on Halley's method .
Numer. Math. 59, n® 3, (1991) , 273-276 .

[3] HERNANDEZ , M. A. & SALANOVA , M. A. : A family of
Chebyshev-Halley type methods .
Intern. J. Computer Math .47 , n® 1+2 ,(1993) , 59-63 .

[4] HOUSEHOLDER, A. S.: The numerical treatment of a single nonlinear
equation .

Mc Graw Hill (1970) .

[5] KANTOROVICH, L. V. & AKILOV , G. P. : Functional analysis .
Pergamon Press (1982) .



21

[6] MILLMAN, R.S. & PARKER, G.D.: Elements of differential geometry .
Prentice Hall (1977) .

[7] OSTROWSKI, A.: Solution of equations in euclidean and banach
spaces .

3th. Ed. Academic Press (1973) .

[8] RHEINBOLDT , W. C. : A unified convergence theory for a class of
iterative process .

Siam J. Numer. Anal. 5, (1968) , 42-63 .

[9] ROBERTS, AW. & VARBERG, D. E.: Convex functions .
Academic Press . (1973) .



